在線閱讀 --自然科學版 2021年3期《一類非線性雙曲方程解的時間爆破與能量估計》
一類非線性雙曲方程解的時間爆破與能量估計--[在線閱讀]
石金誠1, 肖勝中2
1. 廣東財經大學 華商學院 數據科學學院, 廣東 廣州 511300;
2. 廣東農工商職業技術學院 科研處, 廣東 廣州 510507
起止頁碼: 239--243頁
DOI: 10.13763/j.cnki.jhebnu.nse.202101011
摘要
研究了一類非線性雙曲方程解的時間性態,利用凹函數的性質,得到了解或者在有限時間內爆破,或者滿足一個時間的能量估計.該結果可看作是將Phragmén-Lindel f二擇一結果由空間推廣到了時間上.

Time Blow-up and Energy Estimation of Solutions for a Class of Nonlinear Hyperbolic Equations
SHI Jincheng1, XIAO Shengzhong2
1. School of Data Science, Huashang College, Guangdong University of Finance & Economics, Guangdong Guangzhou 511300, China;
2. Research Administration, Guangdong AIB Polytechnic College, Guangdong Guangzhou 510507, China
Abstract:
The time behavior of solutions of a class of nonlinear hyperbolic equations is studied.By using the properties of concave functions,We obtain that the solution can either blow-up in a finite time or satisfy a time energy estimate.This result can be regarded as the extension of the alternative result of Phragmén-Lindelöf from space to time.

收稿日期: 2020-09-10
基金項目: 國家自然科學基金(11371175);廣東財經大學華商學院校內導師制項目(2019HSDS28)

參考文獻:
[1]HORGAN C O,KNOWLES J K.Recent Developments Concerning Saint-Venant's Principle[J].Advancesin Applied Mechanics,1983,23:179-269.doi:10.1016/s0065-2156(08)70244-8
[2]HORGAN C O.Recent Developments Concerning Saint-Venant's Principle:An Update[J].Applied Mechanics Reviews,1989,42(11):295-302.doi:10.1115/1.3152414
[3]HORGAN C O.Recent Development Concerning Saint-Venant's Principle:A Second Update[J].Applied Mechanics Reviews,1996,49(10):101-111.doi:10.1115/1.3101961
[4]LIU Y,LIN C H.Phragmén-Lindel f Alternative and Continuous Dependence-type Results for the Themoelasticity of Type Ⅲ[J].Applicable Analysis,2008,87(4):431-449.doi:10.1080/00036810801927963
[5]LIU Y,LIN Y W,LI Y F.Convergence Result for the Thermoelasticity of Type Ⅲ[J].Applied Mathematics Letters,2013,26(1):97-102.doi:10.1016/j.aml.2012.04.001
[6]LIU Y,LIAO W H,LIN C H.Some Alternative Results for the Nonlinear Viscoelasticity Equations[J].Applicable Analysis,2010,89(5):775-787.doi:10.1080/00036811003649082
[7]LIU Y.Structural Stability Results for the Thermos Elasticity of Type Ⅲ[J].Bulletin of the Korean Mathematical Society,2014,51(5):1269-1279.doi:10.4134/bkms.2014.51.5.1269
[8]TANG G H,LIU Y,LIAO W H.Spatial Behavior of a Coupled System of Wave-plate Type[J].Abstract and Applied Analysis,2014,2014(10):1-13.doi:10.1155/2014/853693
[9]AMES K A.Continuous Dependence on Modelling and Non-existence for a Ginzburg-Laudau Equation[J].Mathematical Methods in the Applied Sciences,2000,23(17):1537-1550.doi:10.1007/s00033-005-0035-4
[10]AMES K A,STRAUGHAN B.Non-standard and Improperly Posed Problems[M].San Diego:Academic Press,1997.
[11]EVANS L C.Partial Differential Equations[M].New York:American Mathematical Society,1998.
[12]FLAVIN J N,RIONERO S.Qualitative Estimates for Partial Differential Equation:An Introduction[M].Raton:CRC Press,1996.
[13]QUINTALLINA R.On the Spatial Blow-up and Decay for Some Nonlinear Parabolic Equations with Nonlinear Boundary Conditions[J].Zeitschrift für Angewandte Mathematik and Physik,2006,57(4):595-603.doi:10.1007/s00033-005-0035-4
[14]CHEN W H.Interplay Effects on Blow-up of Weakly Coupled Systems for Semilinear Wave Equations with General Nnonlinear Memory Terms[J].Nonlinear Analysis,2021,202:112160.doi:10.1016/j.na.2020.112160
[15]CHEN W H,PALMIERI A.Nonexistence of Global Solutions for the Semi-linear Moore-Gibson-Thompson Equation in the Conservative Case[J].Discrete and Continuous Dynamical Systems,2020,40(9):5513-5540.doi:10.3934/dcds.2020236
[16]CHEN W H.Cauchy Problem for Thermoelastic Plate Equations with Different Damping Mechanisms[J].Communications in Mathematical Sciences,2020,18(2):429-457.doi:10.4310/cms.2020.v18.n2.a7
[17]CHEN W H.Dissipative Structure and Diffusion Phenomena for Doubly Dissipative Elastic Waves in Two Space Dimensions[J].Journal of Mathematical Analysis and Applications,2020,486(2):1-19.doi:10.1016/j.jmaa.2020.123922
午夜神器成在线人成在线人-午夜神器A片免费看